Active Systems Development at NASA Langley Research Center for Space based Applications

Keith E. Murray

Technology Manager, Chemistry and Dynamics Branch, Science Directorate

Email: keith.e.murray@nasa.gov

Phone: 757 864-1614

October 23, 2007

Outline

- Background
- Overview of Laser Development at Langley
- Space Laser Applications for Science and Exploration
- Current Technology Development
 - Laser Risk Reduction Program (LRRP)
 - Instrument Incubator Program (IIP)
 - Other research activities
- Conclusion

Background

Langley has over 29 years experience in fundamental laser research, concept demonstrations, instrument (design, build and testing) of LIDAR instruments for ground, airborne and

Lidar Atmospheric Sensing Experiment (LASE), 1994

Laser Technology Development Overview

Studies, Modeling, Optical Characterization

- Laser mission concept studies
- Quantum Mechanical Modeling
- 0.3–15 micron spectroscopy
- Laser material characterization

Laser & Receiver Component Technologies

- Laser diode characterization
- High power 2-micron lasers and high efficiency detectors
- Direct and Coherent LIDAR receivers

LIDAR Instrument and Application Development

- Techniques for monitoring global winds on Earth and Mars
- CO₂, Ozone and water vapor DIAL
- · Ranging, velocity, Hazard avoidance

Laser Technology Earth Science Decadal Survey Alignment

Timeframe:	2013 – 2016, Missions listed by cost		
HyspIRI	Land surface composition for agriculture and mineral characterization; vegetation types for ecosystem health	LEO, SSO	Hyperspectral spectrometer
ASCENDS	Day/night, all-latitude, all-season CO ₂ column integrals for climate emissions	LEO, SSO	Multifrequency laser
SWOT	Ocean, lake, and river water levels for ocean and inland water dynamics	LEO, SSO	Ka-band wide swath radar C-band radar
GEO- CAPE	Atmospheric gas columns for air quality forecasts; ocean color for coastal ecosystem health and climate emissions	GEO	High and low spatial resolution hyperspectral imagers
ACE	Aerosol and cloud profiles for climate and water cycle; ocean color for open ocean biogeochemistry	LEO, SSO	Backscatter lidar Multiangle polarimeter Doppler radar
Timeframe: 2016 -2020, Missions listed by cost			
LIST	Land surface topography for landslide hazards and water runoff	LEO, SSO	Laser altimeter
PATH	High frequency, all-weather temperature and humidity soundings for weather forecasting and SST ^o	GEO	MW array spectrometer
GRACE-II	High temporal resolution gravity fields for tracking large-scale water movement	LEO, SSO	Microwave or laser ranging system
SCLP	Snow accumulation for fresh water availability	LEO, SSO	Ku and X-band radars K and Ka-band radiometers
GACM	Ozone and related gases for intercontinental air quality and stratospheric ozone layer prediction	LEO, SSO	UV spectrometer IR spectrometer Microwave limb sounder
3D-Winds (Demo)	Tropospheric winds for weather forecasting and pollution transport	LEO, SSO	Doppler lidar

Source: Earth Science and Applications from Space: National Imperatives for the Next Decade and Beyond, National Research Council, 200,

Current Technology Projects

Development and Evaluation of a 2-micron Differential Absorption Lidar (DIAL) for profiling CO₂

PI: Dr Syed Ismail, NASA Langley Research Center

Objective: Develop and validate a 2-micron DIAL instrument for CO2 field studies and technology validation as an interim step towards the development of a space-based system

Development of UAV-based Global Ozone Lidar Demonstrator (GOLD)

PI: Dr Edward V. Browell, NASA Langley Research Center

Objective: (1) Advance key technologies to enable spacebased ozone LIDAR development. (2) Develop compact UAV-based Ozone LIDAR for new global Ozone and aerosol investigation.

(3) Demonstrate high-altitude Ozone LIDAR using airborne (290 & 300 nm) Ozone LIDAR wavelengths

Doppler Aerosol WiNd Lidar (DAWN) Compact, Engineered, 2-Micron Coherent Doppler Wind Lidar Prototype for Field and Airborne Validation PI: Dr Michael Kavaya, NASA Langley Research Center

Objective: (1) Advancement of 2-micron laser technology towards a packaged, ruggedized system with a direct path to aircraft and

space-flight systems. (2) Packaging and hardening of technologies.

(3) Advance the technology readiness of 2-micron laser components to address the future development of Global **Tropospheric Wind Missions**

transmitter and receiver technologies suitable for a and Amplifier combined High Spectral Resolution Lidar (HSRL)

Oscillator

Planned

Optical

Bench Layout

9.6 x 21.6 in

Heads

Objective: Develop

Lidar (DIAL) instrument to measure tropospheric aerosols and ozone.

Technology Development for a Combined HSRL and O. DIAL Lidar

PI: Dr Chris A. Hostetler, NASA Langley Research Center

Langley Research Center

ALHAT -- Autonomous precision Landing and Hazard detection and Avoidance Technology

ALHAT Objectives:

- Autonomous Precision Lunar Landing Descent and landing systems for crewed and non-crewed lunar missions capable of landing within 10's of meters of predefined surface features or previously deployed assets.
- Autonomous Hazard Avoidance Ability to reach landing sites which may lie in areas containing hazardous terrain features such as craters, slopes, and rocks.

LRRP Diode Laser Pump Array Characterization

- Developed sophisticated Laser Diode Array (LDA) Characterization Facility
- · Developed 16-station LDA Lifetime Test Facility
- Improved LDA heat removal with novel diamond substrate
- · Began development of lifetime theory
- · Assisted ICESAT & CALIPSO flght missions

Quantum Mechanical Modeling

Cost effective design tool:

- Uses quantum mechanics
- Models the physics from lattice structure

Predicts new laser materials:

- Winds Tm:Ho:LuAG, Tm:Ho:LuLF
- Water Vapor Nd:YGAG, GYAG, YSAG

Predicts essential spectroscopic parameters:

- Energy levels (laser wavelengths)
- Lifetimes (laser storage efficiency)
- Energy transfer rates (laser modeling)

Partnership:

Wallace Harrison Science Directorate (SD) fenton.w.harrison@nasa.g ov (757) 864-6680

Technical:

Keith Murray SD Technical Dev. Manager keith.e.murray@nasa.gov (757) 864-1614

If you have further questions today, please see a Partnership Consultant (look for a Bright Yellow badge) or visit the booth on How To Work With Langley